“大数据”一直受到中国企业家的追捧。他们高度重视大数据带来的益处,但一旦涉及将“大数据”的应用融入到公司运营中并辅以必要的资金支持时,公司就很快发现其开展的难度,因此,许多公司对大数据仍持观望态度。目前,在中国,成功运用大数据的电商公司屈指可数。其中值得称道的当属阿里巴巴对于大数据的运用。今年刚刚过去的双11的销量达1207亿元,创历史新高。这惊人数字的背后,作为技术支撑的大数据功不可没,今年,整个大数据在个性化上全面进行应用,实时进行准确运算,将订单的处理和支付能力升级,完成快递网络的全面信息化。最终实现每秒上万笔交易的准确完成。
曼哈特公司认为大数据确有裨益,但并不是所有企业都能成功掘金大数据;只有那些富有远见、重视系统且敢于投资的公司才会有所斩获。曼哈特公司相信,对于零售业而言,有三个重要战略可帮助电子商务成功运用大数据。
1. 正确理解大数据
不必纠结于大数据到底是什么,试图计算出多少数据才算大数据是不明智的。首先,没有确切的数字或数量级可用作数据量的分界线,因为大数据不在“量”,而在“全”。通过对全面数据的分析可以发现相应的趋势,进一步预测未来。想要掌握大数据,必须具备“大数据”的思维模式,即关注于那些已帮助完成了某项任务的数据。从庞大的历史数据中寻找规律,从而预测未来;或者找出有关因素,对搜索最佳数据的系统进行改善,获得正确数据取得最大利益。
2. 如何获取大数据?
大数据被炒热和巨无霸企业在其中获得的巨大商业价值密不可分,但这并不意味着大数据是只有大公司才买得起的“独有玩偶”。小公司也能拥有自己的“大数据”。虽然大多数电商企业仍处于起步阶段,但它们也可以收集数据,挖掘优秀人才帮助做出更加明智的决定。数据分析可以从小数据开始、效果立竿见影,随后发展成为大数据。即使一家小咖啡厅也能通过探寻顾客的饮用习惯、信用卡记录以及在线定位设置而建立自己的“大数据”。
尽管中小型企业还未完全配备企业先进的大数据线上工具和模式,但他们仍能从本公司历史数据中找出规律。例如,有了一两个月推广促销活动的历史数据后,服装电商公司就可以开始分析各个品类的销售表现情况,掌握一周或一个月内的最畅销和最滞销的销售品类信息,同时清楚了解长期内的平均增长率和复合增长率。这样的数据分析方法能提供产品销售额和产品销售表现的衡量指标,从而找出产品销售模式和趋势,做出下一步商业决策。这样将帮助企业实现更大的销售额,同时,无论有无市场推广活动,都可以监控产品的销售表现。
3. 整合零售策略与大数据
从企业的角度来看,大数据的最大价值在于零售策略与大数据技术相结合。目前,由于消费者对于他们所希望的购物时间与购物方式的要求越来越高,现代零售业已变得愈发复杂。因此,零售商需要更加聪明地来服务顾客,更加灵活地选用库存和配送订单的地点,更加明确如何使用搜集到的顾客数据进行线上线下的交叉销售和追加销售。为了达成这一目的,零售商需要借助一个定制软件来制定以顾客为导向、基于数据的策略,以便于为顾客提供个性化服务。
此外,企业必须将零售策略与数据分析最大程度地相匹配,保证销售计划的实现。大数据最大的特点之一就是在于能够高速更新和处理信息。根据这一特性,商业数据一旦生成,就可以进行相应策略的制定,帮助公司赢得时间与空间调整市场策略,以最充分地发挥自身优势。这就像防洪预警:上游一旦有所警示,下游就应立即作出回应调整。例如,涉足线上的传统零售商,在一组货品的15分钟促销时间内,往往会准备三套应变策略,以确保商品按计划销售。
通过整合零售策略和大数据,企业将能够吸引更多消费者、为他们提供定制化服务,从而提升产品销售表现、增加销售额,进而扩大收益。